SYSTEMD-SYSEXT(8) systemd-sysext SYSTEMD-SYSEXT(8)
NAME
systemd-sysext, systemd-sysext.service - Activates System Extension Images
SYNOPSIS
systemd-sysext [OPTIONS...]
systemd-sysext.service
DESCRIPTION
systemd-sysext activates/deactivates system extension images. System extension images may
- dynamically at runtime -- extend the /usr/ and /opt/ directory hierarchies with
additional files. This is particularly useful on immutable system images where a /usr/
and/or /opt/ hierarchy residing on a read-only file system shall be extended temporarily
at runtime without making any persistent modifications.
System extension images should contain files and directories similar in fashion to regular
operating system tree. When one or more system extension images are activated, their /usr/
and /opt/ hierarchies are combined via "overlayfs" with the same hierarchies of the host
OS, and the host /usr/ and /opt/ overmounted with it ("merging"). When they are
deactivated, the mount point is disassembled -- again revealing the unmodified original
host version of the hierarchy ("unmerging"). Merging thus makes the extension's resources
suddenly appear below the /usr/ and /opt/ hierarchies as if they were included in the base
OS image itself. Unmerging makes them disappear again, leaving in place only the files
that were shipped with the base OS image itself.
Files and directories contained in the extension images outside of the /usr/ and /opt/
hierarchies are not merged, and hence have no effect when included in a system extension
image. In particular, files in the /etc/ and /var/ included in a system extension image
will not appear in the respective hierarchies after activation.
System extension images are strictly read-only, and the host /usr/ and /opt/ hierarchies
become read-only too while they are activated.
System extensions are supposed to be purely additive, i.e. they are supposed to include
only files that do not exist in the underlying basic OS image. However, the underlying
mechanism (overlayfs) also allows removing files, but it is recommended not to make use of
this.
System extension images may be provided in the following formats:
1. Plain directories or btrfs subvolumes containing the OS tree
2. Disk images with a GPT disk label, following the Discoverable Partitions
Specification[1]
3. Disk images lacking a partition table, with a naked Linux file system (e.g. squashfs
or ext4)
These image formats are the same ones that systemd-nspawn(1) supports via it's
--directory=/--image= switches and those that the service manager supports via
RootDirectory=/RootImage=. Similar to them they may optionally carry Verity authentication
information.
System extensions are automatically looked for in the directories /etc/extensions/,
/run/extensions/, /var/lib/extensions/, /usr/lib/extensions/ and
/usr/local/lib/extensions/. The first two listed directories are not suitable for carrying
large binary images, however are still useful for carrying symlinks to them. The primary
place for installing system extensions is /var/lib/extensions/. Any directories found in
these search directories are considered directory based extension images, any files with
the .raw suffix are considered disk image based extension images.
During boot OS extension images are activated automatically, if the systemd-sysext.service
is enabled. Note that this service runs only after the underlying file systems where
system extensions are searched are mounted. This means they are not suitable for shipping
resources that are processed by subsystems running in earliest boot. Specifically, OS
extension images are not suitable for shipping system services or systemd-sysusers(8)
definitions. See Portable Services[2] for a simple mechanism for shipping system services
in disk images, in a similar fashion to OS extensions. Note the different isolation on
these two mechanisms: while system extension directly extend the underlying OS image with
additional files that appear in a way very similar to as if they were shipped in the OS
image itself and thus imply no security isolation, portable services imply service level
sandboxing in one way or another. The systemd-sysext.service service is guaranteed to
finish start-up before basic.target is reached; i.e. at the time regular services
initialize (those which do not use DefaultDependencies=no), the files and directories
system extensions provide are available in /usr/ and /opt/ and may be accessed.
Note that there is no concept of enabling/disabling installed system extension images: all
installed extension images are automatically activated at boot.
A simple mechanism for version compatibility is enforced: a system extension image must
carry a /usr/lib/extension-release.d/extension-release.$name file, which must match its
image name, that is compared with the host os-release file: the contained ID= fields have
to match, as well as the SYSEXT_LEVEL= field (if defined). If the latter is not defined,
the VERSION_ID= field has to match instead. System extensions should not ship a
/usr/lib/os-release file (as that would be merged into the host /usr/ tree, overriding the
host OS version data, which is not desirable). The extension-release file follows the same
format and semantics, and carries the same content, as the os-release file of the OS, but
it describes the resources carried in the extension image.
USES
The primary use case for system images are immutable environments where debugging and
development tools shall optionally be made available, but not included in the immutable
base OS image itself (e.g. strace(1) and gdb(1) shall be an optionally installable
addition in order to make debugging/development easier). System extension images should
not be misunderstood as a generic software packaging framework, as no dependency scheme is
available: system extensions should carry all files they need themselves, except for those
already shipped in the underlying host system image. Typically, system extension images
are built at the same time as the base OS image -- within the same build system.
Another use case for the system extension concept is temporarily overriding OS supplied
resources with newer ones, for example to install a locally compiled development version
of some low-level component over the immutable OS image without doing a full OS rebuild or
modifying the nominally immutable image. (e.g. "install" a locally built package with
DESTDIR=/var/lib/extensions/mytest make install && systemd-sysext refresh, making it
available in /usr/ as if it was installed in the OS image itself.) This case works
regardless if the underlying host /usr/ is managed as immutable disk image or is a
traditional package manager controlled (i.e. writable) tree.
COMMANDS
The following commands are understood:
status
When invoked without any command verb, or when status is specified the current merge
status is shown, separately for both /usr/ and /opt/.
merge
Merges all currently installed system extension images into /usr/ and /opt/, by
overmounting these hierarchies with an "overlayfs" file system combining the
underlying hierarchies with those included in the extension images. This command will
fail if the hierarchies are already merged.
unmerge
Unmerges all currently installed system extension images from /usr/ and /opt/, by
unmounting the "overlayfs" file systems created by merge prior.
refresh
A combination of unmerge and merge: if already mounted the existing "overlayfs"
instance is unmounted temporarily, and then replaced by a new version. This command is
useful after installing/removing system extension images, in order to update the
"overlayfs" file system accordingly. If no system extensions are installed when this
command is executed, the equivalent of unmerge is executed, without establishing any
new "overlayfs" instance. Note that currently there's a brief moment where neither the
old nor the new "overlayfs" file system is mounted. This implies that all resources
supplied by a system extension will briefly disappear -- even if it exists
continuously during the refresh operation.
list
A brief list of installed extension images is shown.
-h, --help
Print a short help text and exit.
--version
Print a short version string and exit.
OPTIONS
--root=
Operate relative to the specified root directory, i.e. establish the "overlayfs" mount
not on the top-level host /usr/ and /opt/ hierarchies, but below some specified root
directory.
--force
When merging system extensions into /usr/ and /opt/, ignore version incompatibilities,
i.e. force merging regardless of whether the version information included in the
extension images matches the host or not.
--no-pager
Do not pipe output into a pager.
--no-legend
Do not print the legend, i.e. column headers and the footer with hints.
--json=MODE
Shows output formatted as JSON. Expects one of "short" (for the shortest possible
output without any redundant whitespace or line breaks), "pretty" (for a pretty
version of the same, with indentation and line breaks) or "off" (to turn off JSON
output, the default).
EXIT STATUS
On success, 0 is returned.
SEE ALSO
systemd(1), systemd-nspawn(1)
NOTES
1. Discoverable Partitions Specification
https://systemd.io/DISCOVERABLE_PARTITIONS
2. Portable Services
https://systemd.io/PORTABLE_SERVICES
systemd 249 SYSTEMD-SYSEXT(8)
Generated by $Id: phpMan.php,v 4.55 2007/09/05 04:42:51 chedong Exp $ Author: Che Dong
On Apache
Under GNU General Public License
2025-11-26 16:38 @216.73.216.86 CrawledBy Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)